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Abstract—The availability of millions of transistors on a single
chip has allowed the creation of complex on-chip systems. The
functional verification of such systems has become a challenge.
Simulation run times are increasing, and emulation is now a ne-
cessity. Creating separate verification environments for simulation
and emulation slows the design cycle and it requires additional
human efforts. This paper describes a layered architecture suit-
able for both simulation and emulation. The architecture uses
transactions for communication and synchronization between
the driving environment (DE) and the device under test (DUT).
Transactions provide synchronization only as needed and cycle
and event-based synchronization common in emulators. The result
is more efficient development of the DE and 100% portability
when moving from simulation to emulation. We give an overview
of our layered architecture and describe its implementation. Our
results show that, by using emulation, the Register—Transfer level
(RTL) implementation of an industrial design can be verified in
the same amount of time it takes to run a C-based simulation. We
also show two orders of magnitude speeds up over simulations of
C and RTL through a programming language interface.

Index Terms—C, co-simulation, emulation, hardware descrip-
tion language (HDL), Register—Transfer level (RTL), simulation,
transactions, validation, verification.

I. INTRODUCTION

HRINKING process technologies have allowed building

million-transistor complex designs containing multiple
programmable IP cores on a single chip. The verification of
such systems at many levels is a challenge that must be over-
come to meet time-to-market constraints. The last two decades
have witnessed phenomenal verification advances and the
emergence of separate strategies and tools to verify the design
at the functional, timing, power, and performance levels.

A core verification technique is the construction of models
depicting the design and then simulating them. Key factors that
drive simulation efficiency are the abstraction level of the model
(device versus gate versus Register—Transfer level (RTL) versus
instruction), and the way events are propagated and evaluated.
The emergence of hardware description languages (HDLs) such
as Verilog and VHDL raised the abstraction level and allowed
efficient event-based RTL simulation. With complicated IC de-
signs, the cosimulation of heterogeneous system components
(e.g., RTL netlists and C-based models) became necessary. Pro-
gramming language interfaces (PLIs) for Verilog and VHDL
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have been used to bridge simulation engines. However, the syn-
chronization between such engines plays a crucial role in deter-
mining the achievable raw performance. Finer grain synchro-
nization results in the entire system proceeding at the rate of
the slowest verification engine. For example, consider using
cycle-based synchronization when co-verifying using two simu-
lators. The performance becomes limited due to the cycle-based
interaction between the two. It is possible that a pure HDL sim-
ulation can run faster than one using a PLI. However, during
a design cycle, the human effort saved justifies the slower per-
formance, especially when prototyping or emulation will follow
the simulation.

A key advance in co-simulation is utilizing transactions to
communicate between simulation engines. Transactions bundle
several pin-accurate signals into a single atomic event, mini-
mizing communication latency and maximizing communication
bandwidth. They contain both data and synchronization infor-
mation. Transactions are exchanged among the engines with ex-
plicit sends and receives. They allow each engine to forge ahead,
performing one or more clock cycles worth of work after each
synchronization point. For example, all the data for a multicycle
bus sequence or data communication frame may be moved via a
single message through one synchronization point. In contrast,
with cycle-based communication, there would be one message
and one synchronization point for each clock cycle. Event-based
communication results in even more messages and synchroniza-
tion points.

The advantage of transaction-based synchronization versus
cycle-based synchronization can be understood by the following
simplified analysis. The initiation of one transaction for a given
verification engine incurs a latency of L; (in time units), and
creates Clser clock cycles worth of work. One cycle-based syn-
chronization incurs latency of L., where Ly, < L, and creates
only one clock cycle worth of work. If the clock has a period
of 7, then the ratio of the work done by the transaction-based
engine to the cycle-based one is

(Cusor X m+ Lt)
(7 + Lgc)-

Thus, a transaction-based verification engine will enable better
performance than a cycle-based one if the latency overhead L,
is kept to a minimum and if it is possible to perform many cycles
of work based on each transaction (i.e., C\se; is large).

Zaiq Technologies, founded as ASIC Alliance in 1996, in-
troduced transactions to overcome the simulation communica-
tion bottleneck between a C-based test environment and an HDL
netlist of a SoC-under-test (SUT) [14]. The two simulation envi-
ronments are loosely coupled using transactors. Transactors are
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API interfaces that pack/unpack the signal bundling, if needed.
Several types of transactors are used including: generator trans-
actors that provide input data to the SUT and introduce errors for
debugging purposes as needed; collector transactors that collect
SUT output data and detect and report signaling violations; and
a controller transactor that monitors transactor states and global
time counters and that controls other transactors. Both polling
and interrupt communication is allowed in the transactor imple-
mentations.

The need to describe more complex systems drove the cre-
ation and popularity of SystemC [23]. SystemC and the related
methodology is capable of supporting transaction level mod-
eling using the channel, interface, and event objects, and in a
more substantial way than previously possible [10]. Instead of
modeling a bus as wires with pin-accurate interfaces with con-
nected modules, the bus protocol can be modeled in the bus and
each device communicates with the bus model using a transac-
tion-level API. This type of modeling reduces the effort required
to model individual wires and also reduces the number of events
in the system. The verification effort is minimized, along with
improving simulation speed. The timing accuracy depends on
the design tasks, and it can be set to be untimed, correct order
of event, or synchronized to a clock.

The SystemC Verification Standard provides capabilities
to efficiently build test environments [11]. APIs for transac-
tion-level verification and recording are provided. A transac-
tion-based verification methodology partitions the system into
transaction-level tests, transactors and the design [3]. Tests are
written at the architectural task levels. The same test can be
used for RTL testing through an adapter/transactor. The tests
and transactors communicate via task invocation at a level
above the RTL level of abstraction. The transactors and the
design communicate through RTL-level signals. Transactions
thus allow writing verification tasks at the architectural level,
and the transactors allow the reuse of these tests at the RTL
level. Research continues to create effective methodologies and
to investigate accuracy issues in transaction-level modeling [4],
[7], [16].

In addition to simulation, emulation has become a standard
way of functional verification [5], [6], [8], [9], [12], [13], [15],
[20]. Compared to emulation, simulation is characterized by
greater controllability and observability, and a cheaper, easier
development framework. Simulation is thus typically used ear-
lier in the design cycle, while emulation is used later to un-
cover bugs that require extremely long executions that cannot
be achieved through simulation [8].

Until recently, when the verification methodology required
the use of both emulation and simulation, each functional verifi-
cation platform required the creation of its own stimulus driving
environment (DE). For example, an HDL testbench is needed in
the case of simulation, and an in-circuit hardware test fixture for
emulation. This duplicate effort is a serious problem causing ad-
ditional cost and delayed time-to-market. In addition, the migra-
tion from simulation to emulation became problematic. Large
efforts were expended to minimize the effort to bring up a large
design on an emulator. Popsecu and McNamar proposed using
the Zycad simulation accelerator to verify the logic netlist for

the emulator, thus minimizing initial debugging effort on the
emulator [20]. This migration problem is more evident in large
SoC designs composed of hybrid design representations.

The use of a single software-based stimulus environment for
both simulation and emulation is attractive because it readily
supports the migration between the two. Schnaider and Yogev
have proposed using transactions for the concurrent verification
of hardware and software [21]. They describe a detailed API
to interface a hardware simulation engine and C code. They
observe that the simulation performance is not suitable for
verifying entire application C code; they state the need for
interfacing the C code with an emulator, as is proposed in this
paper. Newman describes how testbenches written in C that
drove an HDL simulator were adapted to run on an emulator by
only modifying a small amount of code while verifying a dig-
ital TV design [17]. Zaiq technologies recently partnered with
Aptix, a provider of hardware and software solutions to create
complex system FPGA-based prototypes [2]. Zaiq’s tools and
test environment can then be used to create a transaction-based
prototype. Axis Systems advocates using transaction-based
communication when modeling bus exchanges between a CPU
and the RTL design [1]. Axis Systems’ debugger implements
transaction capture and replay, thus serving as a communica-
tion medium to correlate hardware and software execution.
Cadence/Quickturn advocates the use of transactions within
their emulation system by compiling a transactor onto the
emulator, in a way similar to the one presented in this paper
[18].

This paper details the design of a unified simulation/em-
ulation layered architecture to eliminate the time needed to
readapt the software stimulus environment for emulation and
to allow partial migration of a hybrid design and its stimulus
environment from simulation to emulation. Only the lowest im-
plementation layers are changed when moving from simulation
to emulation. Transactions are used to minimize synchroniza-
tion points between the DUT and the DE. Our system thus has
the following characteristics:

* 100% portability of the DE between simulation and emu-
lation;

 enabling hybrid representations: supporting the DE in a
high level language, C, and the device under test (DUT)
in an HDL;

e elimination of performance bottlenecks (excessive la-
tency) due to excessive DE/DUT communication.

The remainder of this paper begins with an overview of
the unified simulation/emulation architecture. Next, the ar-
chitectural features common in simulation and emulation are
discussed. This is followed by a detailed description of simu-
lation and emulation. We then discuss emulation performance
metrics and performance estimations. Finally, experimental
results and conclusions are presented.

II. ARCHITECTURE

A. Overview

Fig. 1 illustrates the unified, layered simulation/emulation ar-
chitecture. Like traditional simulation/emulation systems, this
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Overview of the layered simulation/emulation architecture. The implementation of the comodeling drivers and primitives is modified when switching

from simulation to emulation. The DUT is run using either a simulator or on an emulator.

architecture consists of a DE and a DUT connected via a com-
munication channel. The DE, DUT, and communication channel
have distinct layered components.

One main component of the DE is the User Application. It
utilizes an API provided by the Application Adapter, which in
turn is implemented using co-modeling Drivers.

The DUT is comprised of the User’s Netlist, an RTL Trans-
actor, and co-modeling Primitives. The transactor acts as an in-
terface between the User’s Netlist and the underlying Primitives.
The transactor transforms transactions into cycle-accurate pin
events.

The raw communication channel provides a mechanism for
transporting data and synchronization between the DUT and
DE. To communicate, the DUT and DE utilize transactions,
which result in an atomic transfer of data and clocking infor-
mation. The transaction composition and width is specified by
the user. Transactions are atomic because any generated events
in the DE or DUT appear at the end of the transaction.

The two top layers on both sides are common in the simu-
lation and emulation environments. However, the implementa-
tions of the co-modeling Drivers and Primitives are different.
Also, the communication channels are physically different. Fur-
thermore, all components of the DUT run on an HDL simulator
in the case of simulation, while running on an emulator system
when using hardware-assisted verification.

B. Uncontrolled Versus Controlled Time

To allow independent time evolution within each verification
engine or within the DE and DUT, the notion of controlled time
modeling within the DUT is developed.

Uncontrolled time refers to real time (wall clock). Controlled
time (or modeled time) refers to the time evolution as seen by
the DUT. Because communication and synchronization are at-
tributes of the modeling environment, not the model, they must

not appear to consume modeled time. Thus, the DUT must be
controlled by a clock that is generated based on controlled time.
The DUT sees the clock and data on edges of the controlled
clock. For example, if the workstation wants to send several
transactions to the DUT prior to the DUT executing any data,
then the next clock edge will not be generated and the DUT will
not be clocked. Once all the transactions are processed and are
ready to pass to the DUT, the next clock edge is generated. The
time used in transportation and processing of transactions is thus
invisible to the DUT. This results in a cycle-accurate execution
framework for the DUT in modeled time.

C. System Operation

The user of this simulation/emulation system provides C code
for the User Application and a Netlist for simulation/emula-
tion. The User Application may contain a complex C model of
a system component or it may contain a test environment that
provides test vectors for the Netlist. The User Netlist is the RTL
or gate level model to be co-verified with the C code.

To send or wait for a transaction from the DUT, the User
Application utilizes specific calls provided by the Application
Adapter’s application programming interface (API). A standard
C API has been developed which may be used across many ap-
plications and which can be used to build a more specialized
application-specific APIL.

Similarly, the User Netlist utilizes signals provided by
the Transactor, which is the system module responsible for
processing input and output transactions to the User Netlist.
Transactors unpack transactions arriving from the DE and pro-
duce a sequence of cycle-level stimuli to the DUT. Transactors
also pack DUT output data and status information that the User
Netlist must send to the User Application. They are thus tai-
lored for each application. They are designed to be compatible
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TABLE 1
RELEVANT API CALLS PROVIDED BY THE APPLICATION ADAPTER
AND UTILIZED BY THE USER APPLICATION

API call || Functionality

useSystem() initiates the system
write(data) blocking write of data to channel
read() blocking read from channel
isReadAvailable() returns true if data is available to be read
isWriteAvailable() returns true if a write would succeed immediately
setReadWidth(i) sets the transaction width for a read operation
getReadWidth() gets the transaction width for a read operation
setWriteWidth(i) sets the transaction width for a write operation
getWriteWidth() gets the transaction width for a write operation
done() || simulation/emulation is terminated.

with the co-modeling Primitives. The latter are application-in-
dependent. They perform low-level synchronization between
the channel and the Transactors.

Transactions can be initiated by the User Application or by
the Netlist. The User Application sends a transaction by calling
the appropriate API routine with the proper data. The call acti-
vates the co-modeling Drivers which send the transaction across
the communication channel. If the DUT’s co-modeling Primi-
tives are busy, the transaction is buffered in the channel. Once
the transaction is received via the co-modeling Primitives, it is
passed to the Transactor. The Transactor unpacks the data and
presents it to the User Netlist.

When initiated by the User Netlist, transactions undergo the
reverse process. The user data is packed by the Transactor and
passed through the communication channel to the co-modeling
Drivers. Similar channel buffering will occur if the co-modeling
Drivers are busy. Once ready, the drivers pass the transaction to
the Application Adapter and then to the User Application.

This architecture can be used in one of two modes: data
streaming and reactive co-modeling. In data streaming, data
vectors independent of previous DUT computations are sent
continuously from the DE to the DUT. This naturally best
utilizes any pipeline mechanism built into the channel. In reac-
tive co-modeling, the User C code depends on the results of a
previous transaction to generate the next transaction. The User
C code thus has to wait for the DUT to process transactions and
to respond and before the initiation of any new transactions.
The channel pipelining is less effective, and the DE and DUT
may be idle awaiting new transactions.

III. APPLICATION ADAPTER

The Application Adapter’s API provides a variety of core
C routines to facilitate sending and receiving transactions. A
summary of relevant routines and related actions appears in
Table I. Call useSystem() checks the availability of the
HDL simulator or emulation hardware. If no simulation license
is available or the desired emulator is in use or powered off,
then this call returns error. The calls setReadWidth (i) and
setWriteWidth (1) set the width of transactions. However,
the width is set only once, and the same widths are utilized
thereafter.

The write (data) writes the value of data to the interface.
This is a blocking call and will wait until the write operation is
possible. The read (data) reads a value from the interface.

This also is a blocking call and will wait until data is available
for reading. The call done () terminates the simulation/emula-
tion run. All of these primitives are powerful. They can be used
by the User Application to perform any send/receive operation
of transactions.

IV. CO-MODELING PRIMITIVES

The co-modeling Primitives are a collection of HDL compo-
nents provided to the user. The Primitives provide functionality
upon which the Transactors can be built. There are four primi-
tives: a clock module, an input module, an output module, and
a Dgate module. They are illustrated in Fig. 2.

The clock module Primitive is a controlled clock generator
providing the user the ability to control the simulation/emula-
tion clock, thus supporting concept of controlled modeling of
time evolution in the DUT. When PositiveEdgeEnabled is as-
serted, the controlled clock undergoes rising transitions in con-
junction with a corresponding transition on the uncontrolled
clock. When PositiveEdgeEnabled is not asserted, the uncon-
trolled clock may fall but will not rise. NegativeEdgeEnabled
has a symmetrical effect with respect to falling clock edges. The
clock module also controls Dgate modules which are latches
that hold DUT data stable at times when the controlled clock is
inactive.

The input module Primitive presents data from the communi-
cation channel to the user’s netlist. The data is sent by the User
Application through the API call write(data). The input Prim-
itive contains an input data register matching the transaction
width that will temporarily hold channel data until the user’s
netlist (through the Transactor) accessed the data. Upon the ar-
rival of new data, the signal NewData is asserted. A one on Data-
Done driven by the transactor indicates that the module may
overwrite the data value during the next cycle.

The output module Primitive allows the user’s netlist
(through the transactor) to send data to the User’s Application,
where it can be read using the API call read(). This Primitive
and the input Primitive are intended to be symmetrical in
operation. Thus, when the module senses NewData, data is
read into an output data register. Once the read operation is
completed, DataDone is asserted.

V. IMPLEMENTATION

Implementing the architecture for both simulation and em-
ulation requires customizing the low-level components of the
architecture in Fig. 1 on both the DE and DUT sides. For simu-
lation, the DE and DUT are realized as two processes connected
through a UNIX-based, POSIX-compliant socket [22]. For em-
ulation, the DE is implemented on a host workstation, the DUT
is mapped to an emulator. The host workstation communicates
with the emulator through a PCI card [19] and a specialized
component, called the PCI-IB.

A. Simulation

The simulation environment consists of two executables rep-
resenting the DE and DUT. The C code for the User Applica-
tion is compiled together with an API library for the Applica-
tion Adapter. The library contains the API functions described in
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Fig. 2. Co-modeling primitives and their interaction with the transactor and user RTL.

Section III. Here, the API functions contain socket-based calls
to interact with the other executable.

The other executable has an HDL simulation core which runs
the User RTL, Transactor code, and co-modeling Primitives. To
communicate with a UNIX socket, the co-modeling Primitives
(input, output, and clock) use special PLI calls. PLI provides a
mechanism to interface Verilog programs with programs written
in C language. It also provides mechanisms to access internal
databases of the simulator from the C program. During execu-
tion, a provided library containing the PLI routines is dynam-
ically linked with the simulation. Thus, the Primitives through
the PLI calls maintain socket-level communication between the
User RTL code and User Application through a UNIX-based,
POSIX-compliant sockets.

The use of socket-based communication allows viewing the
simulation system as a client-server model. The User Applica-
tion is the client, while the User RTL is the server. This allows
for several clients (user applications) that access the same RTL
code. The current implementation, however, only allows one
client. Moreover, it only allows the client to initiate all contact
with the server, while the server acts only to serve the requests.
This design decision simplified the implementation of the PLI
routines where querying the client for termination was omitted.

Surprisingly, the current simulation implementation proves in
general to be less efficient than a pure PLI solution that directly
stimulates DUT pins without the aid of a Transactor. Some ex-
periments, not reported here, have shown as much as a4 x slow-
down. This behavior is due to the implementation of the uncon-
trolled versus controlled time in the case of simulation. When
the HDL model is awaiting the receipt of a transaction or the pro-
cessing of an outgoing transaction, it is unable to meaningfully
proceed. This manifests as the advancement of uncontrolled
time with controlled time being inactive. Progress is stalled until
the DE model is scheduled by the underlying operating system.

A means by which unproductive controlled clock cycles can
be suppressed is the yielding of control to the DE model at such

times. Based on experience with the emulation implementation,
this modification should result in performance that equals or
exceeds that of nontransaction communication.

B. Emulation

For emulation, the communication channel between the User
Application Side and the User RTL side is implemented via an
interface board, the PCI-IB, that sits between the workstation
host and the emulator. The implementation uses a Sun Worksta-
tion running Solaris 2.5.1, and a VStation-5M emulator system
from IKOS. The emulator connection is made via a face-plate
connect which attaches to a single-emulator I/O cable. The
PCI-IB is implemented primarily using an Altera Flex 10 KE
FPGA.

A simplified block diagram of the PCI-IB is presented in
Fig. 3. The PCI connection is made via the host’s motherboard
connector or a PCI expansion box. The PCI-IB interfaces to the
emulator through a bidirectional 64-b data bus and some con-
trol pins. PCI-IB implements an RCV and a XMIT FIFO of
four entries each. These FIFOs are also modeled in the simula-
tion implementation in order to maintain consistency between
the environments. Each FIFO can hold four entries. Each entry
is 4 Kbits wide corresponding to the maximum transaction size.
It is only possible to read and write the entries in 32-b chunks
on the PCI side and 64 bits on the cable side, requiring multiple
accesses per transmission.

Pointers to FIFO entries for use by the software side of the
PCI-IB interface are maintained explicitly by the software.
FIFO pointers for the emulator side are advanced as a side
effect of transmission or receipt of transaction data messages.

The width of either FIFO may be specified to be narrower
than 4 Kbits in order to reduce the latency between host and
emulator for a transaction. Overall latency is a monotonically
increasing function of width.
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Block diagram of the PCI-IB—the communication board between the host’s PCI cable and the emulator.
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Fig. 4. Round-trip latency is the time required to perform one transaction without any added latencies within the FIFO pipeline within the PCI-IB card. It consists

of the delays through each of the components shown above.

To control the PCI-IB, the low level co-modeling drivers and
Primitives have different implementations in the emulation en-
vironment than those used in simulation. Instead of driver code
that communicates with the UNIX socket, the drivers control
the PCI-IB. Similarly, the Primitives’ implementation directly
controls the PCI-IB emulator interface.

Whereas the controlled versus uncontrolled time concept cur-
rently has a negative performance consequence in a simulation
environment, there is no corresponding behavior in emulation.
Under emulation, since independent platforms execute the DE
and DUT models, uncontrolled time advance on the DUT does
not negatively impact execution of the DE model. In this con-
text, the transaction-based communication delivers significant
performance advantages in comparison to cycle or event-based
models and communication is the performance limiting factor
in DUT execution.

VI. EMULATION PERFORMANCE METRICS AND ESTIMATION

The two performance metrics that will be used to evaluate
the performance of the emulator are the round-trip latency and
the communication bandwidth. In this section, we give pre-
cise definitions for these two metrics and derive quantitative es-
timates that we later compare against measured data.

We define the round-trip latency for our emulation system as
the time required to perform one transaction without any added
latencies of the FIFO pipeline within the PCI-IB card. This la-
tency is depicted in Fig. 4. It consists of the following delays:

* Delays within the workstation, wAPI 4+ rAPI, where
wAPI is the time required to execute an API write to the
point where a transfer from memory to the PCI-IB card is

initiated, and 7 API is the time spent in the read API call.
These delay estimates are given by
50 N

API =7API = — +3 x —
w T M+ ><M

where M is MIPS rating for the workstation, and N is the
number of words in the transactions. The first term is the
overhead of initiating the API write/read instruction, and
the second term states that three clock cycles are needed
to move each word through the API interface.

* Delays transferring the data from the workstation to the
PCI-IB card:

N
wPCI = rPCI = 51301 X p1e X ’VR—‘
where dpcy is the PCI clock period, p1¢ is the number of

PCI clock cycles for a 16-word read or write.
* Delays within the PCI-IB card:

wPCI — IB = rPCI — IB = system X CPCI-IB

where Osystem 18 the clock period of the emulator system
clock, and cpcr—1p is the number of emulator clock cycles
spent on a read or a write within the PCI-IB.

* Delays transferring the data from the PCI-IB to the Emu-
lator,

wPCI — EM = rPCI — EM = gsystem X N

where dsystem i the period of the emulator system clock.
Even though Fig. 3 depicts a 64-b transfer between the
PCI-IB card and the emulator, only 32 of these bits are
used for the data transfer while some of the other bits are
control lines.
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TABLE 1I
DATA FOR DIGITAL CELL PHONE EXAMPLE. VARIATION #1 (DT) OF THE DESIGN REFERS TO IMPLEMENTING THE TRANSMITTER ONLY IN
SIMULATION/EMULATION, AND TO THE REST OF THE DESIGN IN C. VARIATION #2 (DTR) PLACES BOTH TRANSMITTER AND RECEIVER IN SIMULATION/EMULATION

Simulation Emulation
Time Slow | CPU Utilization Time Slow gate DUT Design
(secs) | Down DUT:DE (secs) | Down Count clocks/frame speed
Variation #1 DT || 330 s 27.5 87%:10% 11 091 152657 250 700kHz
Variation #2 DTR || 700 s 58.3 82%:19% 13 1.08 393523 420 625kHz

Time refers to the execution time in seconds. The slow down compares the execution time to an all C system that simulates in 12 seconds. The CPU utilization
reports how the processor was utilized to perform both simulation and run the C code. The gate count for emulation refers to the number of Primitive gates in the
circuit. The number of clocks per frame describe ohw many DUT cycles were needed to process the design. Finally, the design speed refers to the clock frequency

of the system clock on the DUT side.

* Delays within the emulator co-modeling Primitives:
wPrimitives = rPrimitives = dsystem X Cprimitives

where cprimitives 1S the number of clock cycles in the prim-
itives.
* Delays within the emulator transactors:

wTransactor = rTransactor

= 6controllod_systom X Ctransactor

where Ocontrolled_system 1S the clock period of the con-
trolled system clock, and ¢¢;ansactor 1S the number of clock
cycles in the transactor.

* An application-dependent delay within the DUT.

The expressions given above are simplified estimates for the
following two reasons. First, the PCI bus latencies are the most
difficult to compute. They involve a software strategy to break
the transactions into manageable pieces. Here, we assume all the
transfers occur in 16-word bursts, regardless of the width of the
transactions. Second, we assume that read and write operations
for the PCI transfer, PCI-IB delays, primitives, and transactors
require the same number of clock cycles. In Section VII-B, we
design an experiment that allows comparing our estimates with
measured delays. We only show calculations for vector sizes
greater than or equal to 1024 b.

The communication bandwidth, CB, is the number of vec-
tors that can be inserted and removed from a full pipeline per
second. The full pipeline here assumes that the transmit and re-
ceive FIFOs, XMIT, and RCV FIFO in Fig. 3, are full. It also
assumes that the DUT provides data such that the transactors
do not incur any delays when a read request arrives from the
co-modeling primitives.

Looking at Fig. 4, the limiting CB could possibly be the path
between the workstation and the PCI-IB card

% — wAPI + wPCI + +PCI + rAPL

Alternatively, the path between the PCI-IB and the transactors
could pose the limiting CB:

1
B = wPCI — EM + wPrimitives + wTransactors

+7rPCI — EM + rPrimitives + rTransactors.

As we will see in Section VII-B, the CB is limited by the
workstation to PCI-IB communication bandwidth. Our defini-
tion here of CB is justified because it enables us to do a mean-
ingful comparison with measured data.

VII. EXPERIMENTAL RESULTS

All of the numbers in this section were obtained on an emu-
lator running at 32 MHz with an Sun Ultra-60 running SUNOS
5.7. Additional relevant parameters are listed in Table III.

A. Detailed Example: A Cell Phone

The effectiveness of transaction-based verification is demon-
strated using a digital cell phone design, the TI IS-54 US
TDMA. More information about the design can be found at
http://www.ti.com, search for IS-54.

The design is partitioned into three modules: a transmitter,
a receiver, and a channel. The channel module models the cor-
ruption of transmitter output due to the wireless transmission
environment between the base station transmitter and the cell
phone receiver, as well as fading effects of a moving vehicle
containing the handset receiver. The design environment applies
real speech sample frames, varies the parameters of the channel
model, and listens to the resulting speech sample. Three im-
plementations of the design (all C, C+RTL in simulation, and
C+gates in Emulation) are evaluated for two different variations
of the design. In the first, denoted by design DT in Table II, the
transmitter is only modeled in RTL, while the rest of the system
is modeled in C. In the second, denoted by DTR, the receiver is
moved from C to RTL. A commercial synthesis tool was used
to convert the C into RTL. In all cases, a total of 841 frames of
speech samples were processed. The DUT performed 250 DUT
clock cycles for each frame in DT and 420 DUT clock cycles
for each frame in DTR.

The results are reported in Table II. Although the gate count
more than doubled when more of the design was moved to Em-
ulation, the verification time did not vary much from the all-C
model of 12 s. This demonstrates gate-level verification accu-
racy in the same time as running a C-level model. This occurs
because emulation allows more concurrency in hardware exe-
cution. Certainly, the increase in gate count adversely affects
simulation.

B. Estimation Versus Measurements

We designed an experiment to compare our performance es-
timates for latency and communication bandwidth against mea-
sured emulation data. The workstation, PCI, and Station-5M
emulator parameters are listed in Table III. We designed the
transactor to essentially be one register of width N, the trans-
action width, and no DUT was used. The Application Adapter
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TABLE III
'WORKSTATION, PCI, AND EMULATOR PARAMETERS USED IN THE EXPERIMENT IN SECTION VII-B
Parameter Value

MIPS rating for host workstations M 200 MIPS
clock period for PCI bus dpcr % MHZ
clock period for PCI bus Osystem % MHZ

clock period for PCI bus | dcontrolied_system | 1 MHZ
number of PCI clock cycles for a 16 bit read or write P16 30 cycles
number of emulator clock cycles for a read or a write in the PCI-IB CpCLIB 16 cycles
number of clock cycles in the co-modeling primitives Cprimitives 16 cycles

number of clock cycles in the transactor Ctransactor 1 cycle

TABLE IV
CALCULATED VERSUS. MEASURED ROUND-TRIP LATENCY IN MICROSECONDS, AND THE DIFFERENCE
(a) () (c) (d (e) ®

wAPI | wPCI | wPCI-IB | wPCI-EM | wPrimitives | wTransactor Estimated Measured
Bits + + + + + + Round Trip | Round Trip | % Difference

rAPI rPCI | rPCI-IB rPCI-EM | rPrimitives rT'ransactor Latency Latency
1024 1.46 3.64 0.5 2 0.5 2 10.10 10.67 5.68%
2048 2.42 7.27 0.5 4 0.5 2 16.69 16.50 -1.15%
3072 3.38 10.91 0.5 6 0.5 2 23.29 23.13 -0.68%
4096 4.34 14.55 0.5 8 0.5 2 29.89 29.48 -1.36%

simply calls functions from Table I and used timers to measure TABLE V

transaction delays.

The estimated and measured latencies and the difference be-
tween them, all in microseconds, is shown in Table IV. The
left-most column shows the number of words in a transaction.
The next six columns list the estimation for the different compo-
nents that contribute to the estimated latency. It is obvious that
the transfer from the workstation to the PCI-IB card, wPCI +
rPCl, is the dominant factor—more so as the width of the trans-
action is increased. The latency of the transactor is the same for
all cases because of the way we designed the transactor. The last
column shows the percentage difference between the estimated
and measured latencies.

From the data in Table V, we can also determine the com-
munication bandwidth, CB. The C'B is limited by the work-
station to PCI-IB communication bandwidth because, for each
word size, the sum of columns (a) and (b) is always greater than
the sum of columns (d)—(f). The larger sum in turn gives the
smaller CB. As seen in Table V, the number of extracted vectors
decreases with increasing vector size. However, when the band-
width is given in millions per second, it is evident that communi-
cation bandwidth is increasing. This increase becomes smaller
with increasing vector size as the transaction overheads become
less dominant. Our measurements are within 10% of the esti-
mates for the shown vector sizes.

C. Bandwidth Measurements Versus Pipeline Depth

As mentioned in Section VI, the communication bandwidth
is the number of vectors that can be inserted and removed from
a full pipeline. To achieve a full pipeline effect, several write
requests to the emulator are issued before a read request is ini-
tiated. We define the pipeline depth D as the number of writes
issued prior to a read request. We vary D for this experiment,
along with the transaction width [V, and we demonstrate that the
maximum communication bandwidth can be achieved with little
pipelining (D greater than or equal to 3). This experiment is im-
portant because it shows that the precise structuring of commu-

CALCULATED VERSUS. MEASURED COMMUNICATION BANDWIDTH GIVEN AS
THE NUMBER OF N -BIT VECTORS INSERTED AND REMOVED FROM A
FULL PIPELINE PER SECOND, AND IN MILLIONS OF BITS PER SECOND.
THE LAST COLUMN IS THE DIFFERENCE BETWEEN THE CALCULATION

AND MEASUREMENT

N in bits Computed Measured Difference
# of N-bit | Millions of [[ # of N-bit | Millions of
vectors bits vectors bits
1024 196,218 200.93 179,303 183.61 -9.4%
2048 103,170 211.29 108,305 221.81 4.7%
3072 69,983 214.99 74,962 230.28 6.6%
4096 52,951 216.89 56,380 230.93 6.1%

nication between stimulus and DUT can have a dramatic impact
on ultimate DUT model execution speeds.

The transactors and application adaptor were similar to the
one described in the previous section. The experiment consisted
of the application of one million vectors and then measuring the
number of vectors extracted on the DE side per second. Results
are shown in Fig. 5. Bandwidth nearly attains an asymptotic
level with a pipeline depth of 3 and is maximized with a maximal
transaction size.

D. Event, Cycle, and Transaction-Based Execution Rates

To compare the performance impact of different communi-
cation styles, an experiment is performed in which the number
of communication transactions per DUT cycle is varied. Large
numbers of communications per DUT cycle mimic an event-ori-
ented communication model. A one-to-one ratio corresponds to
a cycle accurate level of communication. Many DUT cycles per
communication corresponds to an abstract transaction-oriented
communication style. The transactor and application adapter
setup again is similar to the ones described in Section VII-B.

Results with communication occuring less frequently than
once per DUT cycle are presented in Fig. 6. Results with com-
munication occuring more frequently than once per DUT cycle
are presented in Fig. 7. As communication becomes infrequent,
overall execution asymptotically approaches the raw execution
rate of the emulated DUT model, whereas when communica-
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Fig.5. Bandwidth, measured in MB per second, of the communication channel
as a function of transaction width N and pipeline depth D.
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Fig. 6. Results in DUT cycles per second when communication occurs less
frequently than once per DUT cycle, mimicking transaction-based behavior.
One cycle per transaction refers to cycle accurate performance.
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TABLE VI
EXPERIMENTAL RESULTS FOR TWO INDUSTRIAL DESIGNS:
TELECOMMUNICATIONS IC AND IP CORE. EMULATION WAS TWO ORDERS OF
MAGNITUDE FASTER THAN SIMULATION OF C AND RTL THROUGH PLI

Gate PLI Speed
Count | simulation Emulation up
Telecom IC 1.6M 20 hrs 5 minutes 240
1P Core 13.2K 5 days 23 minutes 320

tion is very frequent, performance is completely determined by
the communication channel performance and required number
of communication occurrences. Note that, in Fig. 7, the raw ex-
ecution speed of the model is affected by the total model size so
all vector sizes do not asymptotically approach the same limit.

E. Additional Industrial Experiments

Several large industry designs with different characteristics
have been validated using the proposed architecture. In each
case, emulation provided considerable speedups over simula-
tion using PLI. Table VI reports the detailed performance of two
such designs: a telecommunications chip that mostly operated
in co-modeling reactive mode and an IP core that was verified
using test vectors in streaming mode. Both designs show signif-
icant speed ups over PLI-based simulation.

VIII. CONCLUSION

The presented unified simulation/emulation architecture al-
lows for 100% portability between simulation and emulation.
It also provides a communication mechanism to concurrently
exercise different verification engines (compiled C and HDL
simulators, and compiled C and emulator). Two key enabling
concepts in the implementation were using transaction-based
communication and synchronization and utilizing the controlled
time concept to ensure a cycle-accurate execution framework
for the DUT. Experimental data show that performance in em-
ulation is dramatically impacted by the style of communication
between stimulus and DUT and that abstract, transaction-based
communication provides maximum performance. The data also
shows that transaction-based verification using C models and
emulation provides cycle-based accuracy at a performance that
is comparable to abstract and pure untimed C models. Further-
more, speed ups of 320x were obtained over PLI simulation.
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